Journal of Computational and Applied Mathematics 27 (1989) 267-278 267
North-Holland

Factoring with the quadratic sieve on large
vector computers

Herman TE RIELE, Walter LIOEN and Dik WINTER
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received 29 June 1988

Abstract: The results are presented of experiments with the multiple polynomial version of the quadratic sieve
factorization method on a CYBER 205 and on a NEC SX-2 vector computer. Various numbers in the 50-92 decimal
digits range have been factorized, as a contribution to (i) the Cunningham project, (ii) Brent’s table of factors of
Mersenne numbers, and (iii) a proof by Brent and G. Cohen of the non-existence of odd perfect numbers below 102%,
The factorized 92-decimal digits number is a record for general purpose factorization methods.

Keywords: Quadratic sieve factorization, vector computer.

1. Introduction

About ten years ago Rivest et al. [20] discovered that the difficulty of breaking certain
cryptographic codes depends on the difficulty of factoring large numbers. This discovery
stimulated the renewed interest in the classical problem of the factorization of integers. In 1974,
it was considered very difficult to factor numbers in the 40-50 decimal digit range [10, Fig. 1, p.
185]. Now, fourteen years later, 70-80 digits (and even larger!) numbers are factorized in a
routine way by Silverman [8,21], Montgomery [15], Brent [2] and, very recently, Lenstra and
Manasse [23]. This demonstrates the huge progress in the past decade, particularly when we take
into account the—experimental—fact that if the number of decimal digits of the number to be
factorized is increased by three, then the amount of CPU-time needed is roughly doubled. A
well-written survey of modern factoring and primality testing methods may be found in [5].
Many of the numbers’in that book have already been factorized, many others are still awaiting to
be factorized. The tables of “most” and “more wanted” numbers, which are regularly updated,
are good (but hard) starting points for those who want to contribute to this book.

Factoring can be done on any computer, from pocket calculator [1] to supercomputer (as
described in this paper). Silverman has been very successful in using computers in parallel for
factoring [8,11]. Of course, any given computer system puts its own specific requirements on the
factoring algorithm to be chosen, and on the tuning of the algorithm parameters involved (cf.
(7).

Many numbers in [S] have been factorized by means of Lenstra’s elliptic curve method (ECM),
described in [13]. Improvements were proposed by Montgomery [15] and Brent [2], and
impressive factorizations with ECM were obtained by these people, by Silverman, and, most
recently, by Lenstra and Manasse [23].

0377-0427,/89 /$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

268 H. te Riele et al. / Quadratic sieve factorization

In this paper, we shall describe our experiences with the so-called multiple polynomial
quadratic sieve factorization method (MPQS) on large vector computers. This method may be
considered as complementary to ECM since the computing time of MPQS depends on the size of
the number to be factorized, whereas ECM’s computing time depends on the size of the smallest
prime factor of the number to be factorized. At present, numbers with smallest prime divisor up
to 30 decimal digits may be best factorized with help of ECM, whereas numbers with smallest
prime divisor greater than 30 digits may be best factorized with help of MPQS, provided that the
size of the number to be factorized does not exceed about 90 decimal digits. Of course, we
usually do mot have such knowledge about the size of the prime divisors we are seeking. Anyway,
ECM should always be tried before MPQS, in order to eliminate the smaller prime divisors first.

The current record of factorizing numbers by ECM is (L, is the nth Lucas number, Cxx
means a composite number of xx digits, and Pxx a prime number of xx digits)

L44/2207 = P36 - P59
found by Montgomery [6] and the current record of MPQS is
(61— 1) /(52633931 - 6551) = C92 = P34 - P59,

found by us and described in the present paper.

Numbers which are composed of two prime divisors of approximately equal size are the
hardest to factorize, and are particularly interesting for cryptography: they are suitable to act as
keys in so-called RSA public-key cryptosystems [20]. The above records indicate that numbers of
about 100 decimal digits can no longer be considered as safe keys (as they were about 10 years
ago).

We shall report our experiences with the version of MPQS described in [18], on two
single-CPU vector computers: a CDC CYBER 205 and a NEC SX-2. Since these machines
belong to the fastest (commercially) available single-CPU vector computers, and since MPQS is
the best known general purpose factorization method, our results implicitly present the current
state-of-the-art of factoring by general purpose methods.

The largest number we factorized on the CYBER 205 has 82 digits and required about 70
CPU-hours; on the NEC SX-2 we factorized a 92-digit composite number in about 95 hours
CPU-time. Earlier, Davis and Holdridge implemented a variant of the quadratic sieve on a
CRAY-1 and on a CRAY X-MP [10]. Their record is the C71 (10™" — 1) /9, which took them
about 9.5 hours on the CRAY X-MP.

In Section 2 of this paper we describe the multiple polynomial version of the quadratic sieve
factoring algorithm. This algorithm goes back to Kraitchik [12]; Pomerance was the first to
describe and analyze it in its modern form [17]. Davis and Holdridge [10] and, independently,
Montgomery [18] proposed the use of multiple polynomials in the quadratic sieve algorithm.
Section 3 gives a global description of the CDC CYBER 205 and the NEC SX-2, and the values
of the algorithm parameters which we used in our implementations on the two machines. Section
4 presents our computational results in the form of tables of the numbers we have factorized so
far. These fall into three categories:

(i) numbers of the form 5" + 1 [5],
(i1) numbers which play a role in primality proofs of factors of Mersenne numbers 2" — 1 [3],

(iii) numbers which play a role in the proof of the non-existence of odd perfect numbers below
107 [4].

H. te Riele et al. / Quadratic sieve factorization 269
2. The multiple polynomial quadratic sieve

2.1. The MPQS-algorithm

Let N be the (large) number, which is known to be composite by Fermat’s little theorem, and
which we want to factorize. The quadratic sieve algorithm belongs to a class of algorithms which
have the common aim to find two integers X and Y such that

X?=Y? (mod N). (2.1)

If d:=gcd(X — Y, N) satisfies 1 <d <N, then d is a proper divisor of N. In order to find such
an (X, Y)-pair, one may try to find triples (U, V;, W)), i=1, 2, ..., such that

U? = VW, (mod N), (22)

where W, is easy to factor, or at least easier than N. If sufficiently many congruences (2.2) have
been found, these can be combined, by multiplying together a subset of them, in order to get a
relation of the form (2.1).

The version of the quadratic sieve algorithm that we shall employ may be described as follows.
Let U(x)=a*’x+b, V:=a and W(x):= a’x*+2bx+c¢, x€[—M, M), where a, b and ¢
satisfy the following relations:

a’>= 2N /M, b*— N =a’c, |b| < ia?, (2.3)
and M is some fixed integer. Then we have
(U(x))* = V>W(x) (mod N). (2.4)

There are many pairs a, b satisfying (2.3). The quadratic polynomial W(x) assumes extreme
values in x = 0, + M, and these are such that |W(0) | = |W(£M)| = M{/IN.If M < N, thenit
follows that |W(x)| < N; consequently, W(x) is easier to factorize than N. Moreover, since
W(x) is a quadratic polynomial, it has the property that if d | W(x,) for some integer x,, then
d |W(x,+kd) for any integer k. This property can be used to factorize those W(x), x €
[—M, M), whose prime factors are all smaller than some properly chosen number B, by the
following sieving process; we initialize a sieving array SI(j), j = — M,..., M —1,to zero and we
add log(p) to SI(j) for those j€[—M, M) for which p®|W(j), and we do that for all prime
powers p®< B. Since the values of log|W(x)| tend to stay constant on long subintervals of
[—M, M) (typically, we have log|W(x) | =log(M /2\/%_N_)), we can now collect those x &
[—M, M) for which W(x) is only composed of prime factors < B, by selecting those j &€
[~ M, M) for which SI(j) is close to log(M/2/3N). This last number shall be called the
report-threshold. 1f, after the sieving, not sufficiently many factorized W(x)-values have been
found, a new polynomial W(x) is constructed. In Section 2.2 we give the details of how this can
be done in a very efficient way.

The potential prime divisors p of a given quadratic polynomial W(x) may be characterized as
follows: if p|W(x), then,

a®W(x)=(a*x+b)’~N=0 (mod p), (2.5)

i.e., the equation t>*— N=0 (mod p) should be solvable; in other words: p should be a
quadratic residue of N (if we have found a solution t = ¢, of the equation t2 -~ N=0 (mod p),

270 H. te Riele et al. / Quadratic sieve factorization

then we have x = a™*(¢,— b) as a solution of (2.5)). Whether or not p 18 a quadratic residue of
N is easily checked by means of the so-called Euler criterion [19, p. 280], and this is independent
of the choice of the polynomial W(x).

Hence, before we start sieving, we first find the primes p < B, for some suitable B, for which
the equation t>= N (mod p) is solvable. This set of primes is called the factor base FB; it is
fixed during the whole factorization process. The number of primes in the factor base will be
denoted by L, and the primes in the factor base are indicated by pj, for j=1,2,..., L.

If at least L +2 completely factorized W-values have been collected, then (X, Y)-pairs
satisfying (2.1) may be found as follows. We have integers x,, i=1, 2,..., L + 2, such that

L
W(x)=(-1D)*TIp>, i=1,2,...,L+2;
j=1

now we associate with W(x;) the vector a, defined by
af = (a;9, @y,..., a,;) (mod 2).

Since we have more vectors a; (at least L + 2) than components (L + 1), there exists at least one
subset S of the set {1, 2,..., L+ 2} such that

Y a,=0 (mod 2),
ieS§
so that
ITw(x,) is a square, Z2, say.
ieS
Hence, from (2.4) it follows that

2
[H (azxi+b)J =Z*[1a* (mod N),
ieS ies
which is of the form (2.1). The set S is to be found by Gaussian elimination (mod 2) on the
binary matrix with columns a; [16]. This process may yield many different sets S. This is useful,
since not every set S yields a gcd(X — Y, N) between 1 and N, and sometimes the number N is
composed of more than two prime factors. In order to completely factorize such a number, we
need more than one decomposition of N.

The multiple polynomial quadratic sieve algorithm may now be described as follows. A
number of refinements and details are described in Section 2.2.

Algorithm MPQS (To factorize the composite number N)

Step 1. Choose B and M and compute the factor base FB;

Step 2. Generate a new quadratic polynomial W(x);

Step 3. Solve W(x) =0 (mod gq), for all q=p° < B, for all primes p € FB, and save the solutions
for each g¢;

Step 4. Initialize the sieving array SI[— M, M) to zero;

Step 5. Add log(p) to all the elements SI(j), j€[—M, M), for which W(j)=0 (mod q), for
all ¢=p°< B, for all primes p € FB;

Step 6. Select those j for which SI(j) = log M+ 0.5 log 1N) and report and save a, b and j
(¢ follows from a and b, by (2.3));

H. te Riele et al. / Quadratic sieve factorization 271

Step 7. If the number of W(x)-values collected in Step 6 is < L + 2, then go to Step 2;
Step 8. Perform Gaussian elimination on the matrix of exponents (mod 2) of W(x);
Step 9. Factor N.

2.2. Algorithmic refinements and details of the MPQS-algorithm

(i) Use of a multiplier. Sometimes, it is worthwhile to premultiply the number N by a small,
fixed, positive square-free integer, with the purpose to bias the factor base towards the smaller
primes. The criterion we used to determine this multiplier is described in [18].

(i) Small prime variation. When we sieve with a prime p, the number of sieving steps is
|2M/p|. This number is largest for small p, and its corresponding log(p)-value does not
contribute too much to the total log | W(x) |-value. Therefore, it is advantageous to “forget” (as
Pomerance names it) to sieve with the smallest primes. To compensate for this, one has to lower
the report-threshold value in order not to miss any fully factorizable W-value. The only price to
pay is the generation of some false W-values, i.e., which are not fully factorizable over the factor
base.

(iii) Large prime variation. By lowering the report-threshold by an amount of log(8B), for
some fixed B> 1, an unfactorized portion of size between B and BB is allowed in the
W(x)-reports. If we manage to catch two of such W’s with the same unfactorized part, we can
combine these two to yield a completely factorized W-value. The birthday paradox promises that
this will not happen too infrequently. Usually, the unfactorized portion is a large prime between
B and BB, but this is not essential.

(iv) Generation of polynomials. Our choice of generating the quadratic polynomials W(x) is a
special case of one of several possible choices described in [18]. First, we prepare a list of
primes g, &,,..., &, of size =(V2N /M)"*, where we assume that M is chosen such that
(V2N /M)Y* > B. Moreover, the primes g are such that the equation t*=N (mod g?) is
solvable. We denote the two solutions by +b,. Now let a:=g;g;, i # j, be the product of two of
the g-primes. Then with the Chinese Remainder Theorem [19, p. 268] we find a number b with
|b| < 1a® and

b=b, (mod g?), b= tb; (mod g;‘) (2.6)

Then b*= N (mod a?) and we take ¢ = (b>*— N)/a* These a, b and c satisfy (2.3). Since we
have two choices for b, and (%) choices for a we can form r(r — 1) different polynomials from
the set { g1, g5,-.-, &, }-

For each polynomial we have to solve the congruences W(x) =0 (mod g) for all g=p°< B,
for all primes p € FB. This can be done efficiently for a fixed set of g-primes as follows. Solving
W(x) =0 (mod gq) is equivalent to solving (a*>x + b)*>= N (mod gq). Let t{,', j=1,...,k(q) be
the, precomputed, solutions of the congruence 1= N (mod q) [19, pp. 212 and 287-288], then
the numbers x for which W(x) =0 (mod g) are given by

x=a"2(t§— b) (mod ¢q) for j=1,2,..., k(q). (2.7)

So we need the numbers a”2 (mod). Since a = g,g;, we have a™* = g7 g} * (mod ¢); therefore,

by precomputing and storing the numbers g;° 2 (mod g) during the generation of the g—pfimes,
we avoid the need to compute the inverses a~? (mod q) when we select a new polynomial by

272

changing the g, and g; in a. The numbers g

congruence g’x =1 (mod q) [19, pp. 265-266].

H. te Riele et al. / Quadratic sieve factorization

? (mod q) are found by solving the linear

3. Implementation of the MPQS-algorithm on the CYBER 205 and the NEC SX-2

We have implemented the MPQS-algorithm on two vector computers: the CDC CYBER 205
and the NEC SX-2. In Table 1 we list a number of hardware and software characteristics of the
perations in the MPQS-algorithm can be formulated
vectors are processed extremely efficiently by these

particular machines we used. Most of the o
in terms of large vectors of data and such

machines.

The dominant computations in the
these can be done in 32-bits floating-
most powerful factoring methods. The speed we obtained was abou
ations per second (i.e., additions of log(p) to an element of the sievi
the CYBER 205, and about 90 million sieving operations per second
NEC SX-2 the selection part (Step 6) also became time-
the sieving part (Step 5) could be executed. Details of ho
time-critical loops in our FORTRAN programs are give

Table 1

Some hardware and software characteristics of the CYBER 205 and the NEC SX-

quadratic sieve are the sieving operations of Step 5, and
point arithmetic. This makes the quadratic sieve one of the

CYBER 205

NEC SX-2

Hardware
Processors

Vector pipes
Vector registers
Clock cycle
Maximum performance
Word length
integer
real
double
Hardware arithmetic
Central memory

Software
Operating system
FORTRAN

Vectorizing compiler
Optimizing tools

Vector processor
Scalar processor
1 set

no

20 ns

200 Mflop /s

48 bits
64 bits

single(64 bits)
1 MWords

VSOs

FORTRAN 200

with special vector syntax
Yes, but very restricted
VAST

Arithmetic processor
Control processor

4 sets

yes

6 ns

1300 Mflop /s

32 bits

32 bits

64 bits
double(64 bits)
128 Mbytes

SXOS

FORTRAN 77/SX
with vector directives
Yes, good

Vectorizer

Optimizer

Analyzer

t 13 million sieving oper-
ng array SI[—M, M)) on
on the NEC SX-2. On the
critical, due to the high speed by which
w we have vectorized and optimized the

2 used in our computations

H. te Riele et al. / Quadratic sieve factorization 273

Part of the MPQS-computations have to be carried out in multi-precision integer arithmetic.
For this purpose, we used a package of Winter [24], which is also used in Lenstra and Cohen’s
primality proving program [9].

The method used to do the Gaussian elimination (mod 2) is described in [16]. The elements of
the bit-array are packed in words of 64 bits (on the CYBER 205) or 32 bits (on the NEC SX-2).
The elimination operations can then be done very efficiently by XOR-ing with the column
vectors of the array. On the NEC SX-2 this XOR-ing proceeds with a speed of 4 words of 32 bits
per clock cycle. The total Gaussian elimination step takes less than 0.1% of the total work of the
MPQS-algorithm!

4. Results

We have factorized various numbers with our vector computer implementations of the
multiple polynomial quadratic sieve. For each number, several preliminary tests were carried out
in order to determine optimal values of the parameters B and M. In Table 2 we list the
combinations of B and M that we have used for numbers of various sizes, and the corresponding
(approximate) size of the factor base.

In the sieving Step 5, we did not sieve with the primes and prime powers < 30 (small prime
variation). To compensate for this, the report-threshold was lowered by the value 4 log(2) +
3 log(3) + 2 log(5) + L7« , < 20 log(p) = 28.476. This lowering of the report-threshold also has the
effect that W-values can be reported which are not fully factorizable over the factor base (large
prime variation). Here, this incompletely factorizable part of W can be as large as exp(28.476) =
2.329 x 102. However, in order to have a reasonable chance to find matches in these “incom-
plete” W'’s, we rejected those W’s for which the incomplete part exceeded 8B, where we took
B =20 on the CYBER 205 and B8=50 on the NEC SX-2 (cf. Section 2.2 (iii)). Of the
incompletely factorized reported W ’s we found about 30% yielding at least two coinciding parts,
and these 30% generated about 60% of the bit-matrix for the Gaussian elimination. On the NEC
SX-2, about 25% of the incomplete ¥ ’s could be used in this way. This lower percentage was
caused by the larger value of 8 which we used on the NEC SX-2.

Table 2

Combinations of size of the factorized numbers, and B, M and L

Size in decimal digits M B L (approximate)
48 130000 20000 1000
54-56 200000 50000 2500
58-60 200000 60000 3000
63-65 200000 95000 4600
67-69 200000 130000 6200
71-73 200000 140000 6500
74-77, 82 200000 160000 7400
77 2500000 300000 13100

87 2500000 450000 18800 } on NEC SX-2
92 2500000 600000 24300

274 H. te Riele et al. / Quadratic sieve factorization

Table 3
Cunningham-table [5] factorizations
Number Prime factorization CPU-time (hours)
C58 3,288+ P27+ P32 0.2
P27 =185901652872784317405136897
C64 5,149+ P27 % P37 1.2
P27 = 864203844381482464122519761
C72 10,108+ P34%P39 4.3
P34 =1726290008991504500177463302688697
C75 2,542L P36*P40 12
P36 =104167755499168696693743867494211841
C77 3,187+ P29 * P49 12
P29 =18177792435744585993179560027
C77 3,300+ P30 = P47 16
P30 = 438156091706986101113661638401
C82 7,104+ P29 P53 70
P29 =17712988461899423081645348353
C87 7122+ P39 % P49 30 (on NEC SX-2)
P39 = 369232401898464835382701047039367301441
C92 6,131— P34 x P59 95 (on NEC SX-2)

P34 =1284827442574221936870974393373403

We chose the number of g-primes, needed for the generation of W-polynomials, to be fixed on
16, so that we could generate 16 X 15 new polynomials before having to change these g-primes.

Most of the numbers we have factorized were already attacked, by others, with help of the
elliptic curve method, but without success.

So far, we have factorized three (very large) numbers on the NEC SX-2, viz., of 77, 87 and 92
decimal digits. These numbers are explicitly marked in Tables 2, 3 and 6. All other numbers have
been factorized on the CYBER 205. Primality of the factors found was proved with the help of
Cohen and Lenstra’s primality proving program [9].

4.1. Cunningham project

We have factorized several numbers for the Cunningham project [5]. These numbers are
denoted here according to the convention used in [5]: e.g., C58 3,288 + means a composite
number of 58 decimal digits, which is a cofactor of the number 3?88 + 1. By 2,542L is meant a
cofactor of the so-called Aurifeuillian decomposition of 2°#? + 1. Table 3 lists the factorizations
we have found so far. The C72, C75, C82 and C87 in Table 3 were “more wanted” and the C92
was “most wanted” at the time they were factorized. The C92 was an absolute record, in size, of
a number factorized by a general purpose factoring algorithm.

In Table 4 we present, for comparison, a survey of the results obtained by Davis and
Holdridge on a CRAY-1S by means of a variant of the quadratic sieve [10].

4.2. Factors of Mersenne numbers

Richard Brent is continuously working on a table of factors of Mersenne numbers, which also
provides additional information for a succinct primality proof of the factors given [3]. We have

H. te Riele et al. / Quadratic sieve factorization

275

Table 4
Results of Davis and Holdridge on a CRAY-1S
Number Prime factorization CPU-time (in hours)
C53 3,128+ P15*P19* P21 6.0
C54 2212+ P23%P32 1.0
C55 10,64+ P23x P33 44
Cs5 5,79~ P15% P20+ P21 1.0
C58 3,124+ P17+ P41 1.8
Cc60 2,211~ P20* P40 223
Cc61 10,67 — P20* P41 1.2
C67 11,64+ P18 % P49 15.3
Cc69 2.251— P21+ P23 % P26 323
Cc71 10,71 - P30* P41 9.5 (onaCRAY X-MP)
Table 5
Numbers factorized for the table of Mersenne numbers [3]
Number Prime factorization CPU-time (in hours)
C63 M503 P22 % P41 0.8

P22 = 5146314011942914857751
C64 M709 P27 % P38 0.8

P27 =106401034370945865184584169
C67 MS509 P24 % P43 2.2

P24 = 968224465437705734045581
C69 M43l P27 = P42 29

P27 = 627565950883854318952353547
C71 M443 P17 = P55 8.1

P17 = 26760977129762719
C73 M389 P20 * P53 122

P20 =16598743384976073023

factorized several numbers needed for this table. The results are given in Table 5. By Mn we
mean a number factorized for the Mersenne number 2" — 1.

4.3. Factorizations for proofs of the non-existence of certain odd perfect numbers

For a proof of the non-existence of odd perfect numbers below 102® certain numbers of the
form o(a®) had to be factorized [4]. Here o(+) denotes the sum of the divisors function. In Table
6 we use the following notation: e.g., C48 2017 A 6 means a cofactor of a(2017'¢) of 48 decimal

digits.

5. Conclusions

Our experiments indicate that larger vector computers are very well suited for factoringhlarge
integers with help of the quadratic sieve method. Our CYBER 205 program runs about twice as

276

H. te Riele et al. / Quadratic sieve factorization

Table 6

Factorizations for [4]

Number Prime factorization CPU-time

(in hours)

C48 2017A16 P23 P25 0.05
P23 = 72008214963608854098577

C52 317A22 P22+ P30 0.09
P22 = 9325995656822900233231

C54 8170509011431363408568150369 A 2 P19x P36 0.10
P19 =1019154672897905893

C55 459116 P24xP31 0.17
P24 = 955801233000296205155233

C56 4671n22 P26+ P30 0.24
P26 = 61213091380071615958083811

C58 613A22 P29* P30 0.29
P29 = 25815256247831656853726042407

C58 1163018639068051 A4 P22 % P37 0.44
P22 = 2039459061440951452061

C59 4733A18 P27+ P32 0.47
P27 = 681665903475579942644607417

C60 17189128703 A6 P28 P32 0.42
P28 = 372902827337738410409421939

C60 80028110 P29 P31 0.36
P29 =14630656906581675405799182259

C64 191 A30 P19 % P45 1.1
P19 = 8510327225640925409

C65 3823A18 P33% P33 1.1
P33 =153434889660683954432261024327561

C65 101A36 P24x P42 1.2
P24 = 275066876202623893829603

C66 18041 A16 P26« P40 1.7
P26 = 93815349051618588433552823

C69 6073A18 P28 % P41 2.4
P28 = 4418900065929682250746040969

C69 61206712 P30* P39 5.1
P30 = 401297819245016618043922143043

C71 625552508473588471 A4 P11+ P26 %« P35 5.6
P11 = 23851865321
P26 = 30679951282172311526335631

C72 34511 A16 P24 x P48 6.0
P24 = 468717183488261171349569

C74 20241187 A10 P29 x P45 11
P29 = 44191479325025062507848929251

C75 2467A22 P36 % P40 17
P36 = 266592662694367677346502147254920281

C77 64171 A16 P23x P24 x P31 2.5
P23 =28782215721293361271699 (on NEC SX-2)

P24 = 610502384841094120870067

H. te Riele et al. / Quadratic sieve facrorization 277

fast as the CRAY-1S program of Davis and Holdridge. Our NEC SX-2 program is much faster:
about 5-10 times as fast as the CYBER 205 program. Moreover, some tests on the NEC SX-2
with numbers already factorized by Davis and Holdridge indicated that our NEC program is also
5-10 times as fast as their CRAY X-MP program. As a comparison with Bob Silverman’s
program running on a parallel network of 24 Sun-3 workstations, we mention that, at the time of
the writing of this paper, the largest number he had factorized with the MPQS-algorithm was
C90 5,160 + [22], and this took him about 15000 CPU-hours. Each machine therefore took
about 625 hours. Not very long ago, a key of 100 decimal digits in the RSA public-key
cryptosystem seemed safe. Our results show, that this size should now be lifted at least up to
120-130 decimal digits.

Note added in proof

After we wrote this paper, Arjen Lenstra (Univ. of Chicago and DEC SRC) and Mark
Manasse (DEC SRC) established new records for MPQS by first factoring a 93-digit number,
and next a 96-digit number. Rather than using one single-CPU computer, they used many Firefly
workstations, each of which contains 5 MicroVAX II processors, or 4 CVAX processors. In
addition, they received assistance from a few other computers (Sun 3, Sun 4 and VAX 750) from
other sites. For the 96-digit number, 95% of the computing work was done on 65 Firefly
workstations. This work comprised a total of about 10 CPU years, with an elapsed time of 23
days.

Acknowledgements

The computations have been carried out on the 1-pipe CYBER 205 of SARA (The Academic
Computer Centre Amsterdam) and on the NEC SX-2 of the Dutch National Aerospace
Laboratory (NLR) at Vollenhove. We are very grateful to the staffs of these two supercomputers
for the technical and operational support during this project. We are also grateful to the
management of the NLR for the provision of a large amount of free computer time for this
project. We are much indebted to the Dutch “Werkgroep Gebruik Supercomputers” (Working
Group on the Use of Supercomputers) for the provision of the computer time on the CYBER
205 and for partial financial support for the computer time on the NEC SX-2. Last but not least,
we also acknowledge the free computer time which we obtained from CDC Benelux during the
initial phase of this project.

References

[1] W.D. Blair, C.B. Lacampagne and J.L. Selfridge, Factoring large numbers on a pocket calculator, Amer. Math.

Monthly 93 (1986) 802-808.
[2] R.P. Brent, Some integer factorization algorithms using elliptic curves, Austral. Comput. Sci. Comm. 8 (1986)

149-163.
[3] R.P. Brent, Table of factors of Mersenne numbers, Draft Report, The Australian National University, 1987.

278 H. te Riele et al. / Quadratic sieve factorization

[4] R.P. Brent, G.L. Cohen and H.J.J. te Riele, An improved technique for lower bounds for odd perfect numbers,
Report TR-CS-88-08, The Australian National University, Department of Computer Science, 1988.

[5] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S. Wagstaff, Jr., Factorizations of b" +1, b=12,3,5,
6,7, 10, 11, 12 up to High Powers, American Mathematical Society Contemporary Mathematics Series 22 (AMS,
Providence, RI, 2nd ed., 1988).

[6] J. Brillhart, P.L. Montgomery and R.D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50
(1988) 251-260.

[7] D.A. Buell, Factoring: Algorithms, computations, and computers, J. Supercomput. 1 (1987) 191-216.

[8] Th.R. Caron and R.D. Silverman, Parallel implementation of the quadratic sieve, J. Supercomput. 1 (1988)
273-290.

[9] H. Cohen and A K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987) 103-121.

[10] J.A. Davis, D.B. Holdridge and G.J. Simmons, Status report on factoring (at the Sandia National Laboratories),
in: T. Beth, N. Cot and I. Ingemarsson, Eds., Advances in Cryptology (Proc. EUROCRYPT 84) (Springer, Berlin,
1985) 183-215.

[11] C.A. Gantz, R.D. Silverman and S.J. Stuart, A distributed batching system for parallel processing, preprint, 1987.

[12] M. Kraitchik, Théorie des Nombres, Tome II (Gauthiers-Villars, Paris, 1926).

[13] H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987) 649-673.

[14] W.M. Lioen, H.J.J. te Riele and D.T. Winter, Optimization of the MPQS-factoring algorithm on the Cyber 205
and the NEC SX-2, Supercompurer 26 (1988) 42-50.

[15] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Marth. Comp. 48 (1987)
243-264.

[16] D. Parkinson and W. Wunderlich, A compact algorithm for Gaussian elimination over GF(2) implemented on
highly parallel computers, Parallel Compuz. 1 (1984) 65-73.

[17] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in: H.W. Lenstra, Jr. and R.
Tijdeman, Eds., Computational Methods in Number Theory, Math. Centre Tract 154 (Math. Centre, Amsterdam,
1982) 89-139.

[18] C. Pomerance, J.W. Smith and R. Tuler, A pipeline architecture for factoring large integers with the quadratic
sieve algorithm, SIAM J. Comput. 17 (1988) 387-403.

[19] H. Riesel, Prime Numbers and Computer Methods for Factorization (Birkhiuser, Boston, 1985).

[20] R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,
Comm. ACM 21 (1978) 120-126.

[21] R.D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987) 329-339.

[22] S.S. Wagstaff, Jr., Personal communication, 1988.

[23] S.S. Wagstaff, Jr., Update 2.1 to the Second Edition of [5], 1988.

[24] D.T. Winter, A portable package for multi-precision integer arithmetic, to appear.

